

NDA105676

THE EFFECT OF MULTIBURST NO PRODUCTION ON ELECTRON DENSITIES AND HF ATTENUATION AT 60 KM ALTITUDE

Murray Scheibe

Mission Research Corporation
P.O. Drawer 719

Santa Barbara, California 93102

1 October 1980

Final Report for Period 1 December 1978-31 May 1980

CONTRACT No. DNA 001-79-C-0089

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

THIS WORK SPONSORED BY THE DEFENSE NUCLEAR AGENCY UNDER RDT&E RMSS CODE B322079464 S99QAXHD41121 H2590D.

Prepared for

Director

DEFENSE NUCLEAR AGENCY

Washington, D. C. 20305

D

81 10 10

Destroy this report when it is no longer needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY, ATTN: STTI, WASHINGTON, D.C. 20305, IF YOUR ADDRESS IS INCORRECT, IF YOU WISH TO BE DELETED FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION.

DD FORM 1473 EDITION OF 1 65 IS OBSOLETE

calculations are planned.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

400548

production on HF communication systems could also be significant. Further

TO THE PERSON AND PROPERTY.

TABLE OF CONTENTS

	Page
INTRODUCTION	3
ODD OXYGEN CONCENTRATION	5
NEGATIVE ION DISTRIBUTIONS	9
NO PRODUCTION BY NUCLEAR BURSTS	13
ELECTRON DENSITY REDUCTION DUE TO NO	16
SPECIFICATION OF AMBIENT CONSTITUENTS	19
CONCLUSIONS	20
REFERENCES	21

Acces	sion For	
NTIS	GRA&I	×
DTIC	TAB	
Unann	ounced	Ö
Justi	fication	
T	ibution/ lability	Codes
	Avail and	i/or
Dist	Special	L
A		

INTRODUCTION

一大 一大 一大 一大

There has, in the past, been a great deal of work concerning the degradation of HF communications systems following a nuclear burst. The long-term effects of a large number of bursts in the atmosphere has not, however, been studied very extensively. This report deals with an initial study of the effects of a large number of bursts on the chemistry of the atmosphere pertaining to HF attenuation in regions where the total integrated energy deposition is large but not large enough to cause large scale hydrodynamic effects.

The attenuation of HF signals is usually centered in an altitude region around 60 km, and our initial studies were conducted at this altitude during daytime. At this altitude, and for ionization rates of interest, the electron production rate is dominated by, except at early times, electron detachment from negative ions rather than by the direct ionization caused by gamma or beta ray deposition. This detachment is accomplished primarily by chemical detachment of 0_2^- and 0^- by atomic oxygen, the excited species $0_2(^1\Delta)$ and, to some extent, nitric oxide. The reactions involved are

$$0_2(^1\Delta) + 0_2^- + 0_2 + 0_2 + e$$
 (1)

$$0 + 0_2^- \rightarrow 0_3 + e$$
 (2)

$$0_2(^1\Delta) + 0^- + 0_3 + e$$
 (3)

$$0 + 0^{-} + 0_{2} + e$$
 (4)

THE RESIDENCE OF THE PARTY OF T

$$NO + O^{-} \rightarrow NO_{2} + e \tag{5}$$

Photodetachment of all negative ions can also play a role.

$$X^- + hv \rightarrow X + e$$
 (6)

In the ambient or near-ambient atmosphere at 60 km, reactions 1 to 4 provide virtually all the detachment with reactions 1 and 2 being dominant.

Any multiburst effect, then, which can signficiantly alter the concentrations of 0, $0_2(^1\Delta)$, 0_2^- or 0^- could have significant effect on the electron density and therefore on HF propagation.

ODD OXYGEN CONCENTRATION

Under ambient conditions, the concentration of "odd oxygen," which we take as the sum of atomic oxygen and ozone, is determined by the photodissociation of $\,0_2\,$ and the various loss mechanisms. The processes which convert $\,0\,$ to $\,0_3\,$ and back, such as

$$0_3 + hv + 0_2(^1\Delta) + 0(^1D)$$
 (7)

$$0 + 0_2 + M + 0_3 + M$$
 (8)

do not affect the odd oxygen total. One of the reaction cycles which depletes the odd oxygen involves NO,

$$NO + O_3 + NO_2 + O_2$$
 (9)

$$0 + N0 + M \rightarrow N0_2 + M$$
 (10)

$$0 + NO_2 \rightarrow NO + O_2$$
 (11)

Another reaction cycle involves species containing hydrogen and contains the reactions

$$H + O_3 \rightarrow OH + O_2$$
 (12)

$$0H + 0_3 + H0_2 + 0_2$$
 (13)

$$0 + H0_2 \rightarrow 0H + 0_2$$
 (14)

$$0 + 0H \rightarrow 0_2 + H$$
 (15)

$$0(^{1}D) + H_{2}O \rightarrow OH + OH$$
 (16)

$$H_2O + hv \rightarrow OH + H \tag{17}$$

$$H + O_2 + M \rightarrow HO_2 + M$$
 (18)

$$0H + H0_2 \rightarrow H_20 + 0_2$$
 (19)

$$H0_2 + H0_2 \rightarrow H_20_2 + 0_2$$
 (20)

$$0H + H_2 O_2 \rightarrow H_2 O + H O_2$$
 (21)

Reactions 20 and 21 are less important than the other reactions. The nitrogen and hydrogen cycles are not totally independent. The reaction

$$NO + HO_2 + NO_2 + OH$$
, (22)

for instance, causes them to be somewhat interrelated.

In addition, the reaction

$$0 + 0_3 \rightarrow 0_2 + 0_2 \tag{23}$$

destroys odd oxygen, but this reaction is never dominant.

Other cycles, such as one involving hydrocarbons, probably exist, but in the ambient 60 km altitude atmosphere the cycle involving H, OH and HO $_2$ (reactions 12 to 21) is the dominant one and virtually determines the odd oxygen content. Reactions 7 and 8 primarily determine the ratio of 0 to 0 $_3$ and reaction 7, together with the quenching reaction

$$0_2(^1\Delta) + 0_2 \rightarrow 0_2 + 0_2$$
 (24)

determines the $O_2(1\Delta)$ concentration.

The main long-term effect on the atmosphere produced by nuclear bursts is the production and persistence of NO and NO2. Unlike the other species formed by a nuclear burst, which react chemically to reform the molecules from which they were produced, NO and NO2 persist in the atmosphere until diffusion and precipitation remove them. This occurs on a longer time scale than we are concerned with for HF communications problems. The presence of nuclear produced NO and NO2 prevents the odd oxygen and $O_2(^1\Delta)$ concentrations from returning to their pre-burst values. As the NO increases (photochemical equilibrium keeps the NO2 in a fixed ratio with the NO), reactions 9 to 11 become more important. At a concentration of NO of about 2×10^{10} cm⁻³ (ambient NO density is of the order of 10^8 cm⁻³), the odd oxygen due to NO and NO2 is about equal to the depletion due to H, OH and

 HO_2 . Any further increase in the NO concentration will produce significant decreases in the odd oxygen concentration and, because of reaction 7, in the $\mathrm{O}_2(^1\Delta)$ concentration. This reduction of 0 and $\mathrm{O}_2(^1\Delta)$ will significantly reduce the detachment and therefore the electron density at late times below that which would be expected using normal ambient NO densities. This applies not only to the natural source of ionization but to any nuclear burst which is detonated late in the barrage or some time after the main barrage.

NEGATIVE ION DISTRIBUTIONS

Another way by which the NO produced by a nuclear burst affects the detachment and electron densities is via the distribution of negative ions. The negative ions which are formed initially are 0_2^- and 0^- . The reactions involved are

$$0_2 + e + M + 0_2 + M$$
 (25)

$$0_3 + e \rightarrow 0^- + 0_2$$
 (26)

$$0_2^- + 0 \rightarrow 0^- + 0_2$$
 (27)

These are the ions which are easily detached chemically (see reaction 1 to 5) and by photodetachment by sunlight. They also enter into a series of reactions with other atmospheric species to form other negative ions which are not easily detachable. These ions include 0_3^- , 0_4^- , $C0_3^-$, $C0_4^-$, $N0_2^-$, and $N0_3^-$. A simplified representation is shown in Figure 1. We see that the transformation of 0^- and 0_2^- to the terminal ions $N0_2^-$ and $N0_3^-$ (ions which cannot easily be chemically detached) takes place through a set of intermediate ions. These ions, 0_3^- , 0_4^- , $C0_3^-$, and $C0_4^-$, can either be transformed to the terminal ions by reactions with NO and $N0_2^-$ or back to the initial ions by reactions with 0 and 0_3^- . Some of the important reactions are

$$0^{-} + 0_{2} + M + 0_{3}^{-} + M$$
 (28)

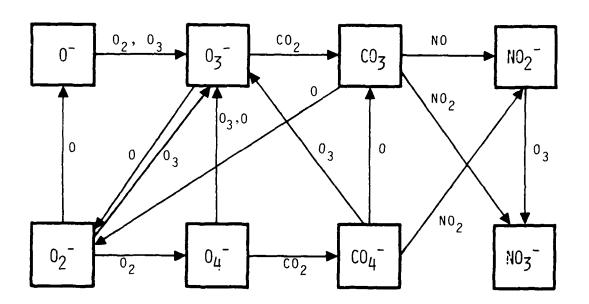


Figure 1. Simplified negative ion chemistry scheme.

$$0^- + 0_3 \rightarrow 0_3^- + 0$$
 (29)

$$0_2^- + 0_2^- + M \rightarrow 0_4^- + M$$
 (30)

$$0_4^- + c0_2 \rightarrow c0_4^- + 0_2$$
 (31)

$$c0_4^- + 0 \rightarrow c0_3^- + 0_2$$
 (32)

$$0_3^- + C0_2^- + C0_3^- + 0_2$$
 (33)

$$0_4^- + 0_3 + 0_3^- + 0_2 + 0_2$$
 (34)

$$CO_3^- + NO \rightarrow NO_2^- + CO_2$$
 (35)

$$co_3^- + No_2^- + No_3^- + co_2$$
 (36)

$$CO_4^- + NO_2^- + NO_2^- + CO_2^- + O_2^-$$
 (37)

$$0_4^- + 0 \rightarrow 0_3^- + 0_2$$
 (38)

$$co_4^- + o_3 \rightarrow o_3^- + co_2 + o_2$$
 (39)

$$co_3^- + o \rightarrow o_2^- + co_2$$
 (40)

$$0_3^- + 0 \rightarrow 0_2^- + 0_2$$
 (41)

If the NO and NO $_2$ concentrations are greatly increased, the formation rate of NO $_2$ and NO $_3$ from the intermediate ions is also greatly increased (see reactions 35, 36, and 37). If the O is decreased, the formation rate of O $_2$ from O $_3$ and CO $_3$ (see reactions 40 and 41 is decreased. This not only results in a more rapid evolution of NO $_2$ and NO $_3$ but smaller steady state concentrations of O $_2$ and O $_3$. Referring to reactions 1 and 5, we see that this will also result in a decrease in the electron detachment and steady state electron density.

NO PRODUCTION BY NUCLEAR BURSTS

NO is produced both in the high temperature fireball and in regions outside the fireball where energy is deposited by X-rays, neutrons, beta rays, and gamma rays. Low altitude bursts produce little or no nitric oxide at 60 km unless the bursts are at altitudes such that the fireballs rise and stabilize around that altitude. High altitude bursts deposit most of their energy outside of the fireball, and a significant fraction of this energy can be deposited around 60 km, particularly by X-rays.

The amount of NO per ion-pair evolved by the energy deposition is a variable which depends on the amount of NO present already. This is primarily because of the different ways in which $N(^2D)$ and $N(^4S)$, which are formed very rapidly during the energy degradation processes following the deposition of energy, interact with NO and the atmospheric species. Both react with O_2 to form NO by the reactions

$$N(^{2}D) + O_{2} \rightarrow NO + O$$
 (42)

$$N(^4s) + 0_2 \rightarrow N0 + 0$$
 (43)

Reaction 42 is rapid and is almost six orders of magnitude faster than reaction 43 at 60 km altitude. Thus, virutally all the N(2 D) produced initially reacts to form NO. The fate of the ground state nitrogen, N(4 S), can be quite different. When the NO concentration is larger than about 4×10^8 cm⁻³, N(4 S) will primarily react with NO in the following manner:

$$N(^{4}S) + NO \rightarrow N_{2} + O$$
 (44)

Thus, any $N(^4S)$ atom which enters into reaction 44 not only does not form an NO molecule but destroys one which has already been formed by another nitrogen atom. When the NO concentration is large, further NO production is highly dependent on the difference between the amount of $N(^2D)$ and $N(^4S)$ produced initially. Since the amounts of $N(^2D)$ and $N(^4S)$ formed are not too different (0.68 and 0.46 per ion-pair in our calculations), a moderate uncertainty in either of these numbers causes a large uncertainty in the difference.

The values obtained in our calculations for the NO $\,$ per ion-pair produced are shown in Table 1.

Table 1. NO production per ion-pair.

Total Ion-Pair Production	NO per Ion-Pair
108	1.2
109	0.67
10 ¹⁰	0.40
10 ¹¹	0.33
10 ¹²	0.30

These values were obtained for the total ion-pairs produced instantaneously at t=0. If the ioinization were spread in time, the values for the NO produced would be somewhat larger.

ELECTRON DENSITY REDUCTION DUE TO NO

The results of our calculations for the steady state electron densities as a function of NO concentration are shown in Figure 2. The upper curve is for an ionization rate, q, of 1.6×10^3 , and the lower curve is for $q = 1.6 \times 10^1$ ion-pairs/cm³-sec. The smaller q is representative of the ionization rate at 60 km altitude which can be found 1000 km away from a high altitude megaton fission yield burst after about three hours.² The larger q is representative of the ionization rate in the beta patch after about three hours for a similar burst.²

The lower curve is more typical of what we might expect over a large region of space several hours after a high altitude nuclear burst. We see that as the NO concentration increases over the ambient value, which is of the order of $10^8~\rm cm^{-3}$, the steady state electron density decreases significantly, particularly for NO concentrations above $10^9~\rm cm^{-3}$. At a value of the NO concentration of about $4\times10^{10}~\rm cm^{-3}$, the electron density is decreased a factor of ten. This would correspond to an integrated ionization of approximately 10^{11} ion-pairs (see Table 1). At this point, the odd oxygen and $0_2(^1\Delta)$ is about a factor of two less than ambient. The decrease in the 0_2^- and 0^- is about a factor of nine. This causes a factor of eighteen decrease in the detachment of 0_2^- and 0^- by 0 and $0_2(^1\Delta)$. The reason that the electron density has only decreased a factor of ten is due to the fact that the detachment due to other processes is now a significant part of the total detachment. In particular, the reactions

$$N0_2^- + hv \rightarrow N0_2 + e$$
 (45)

$$N0 + 0^{-} + N0_{2} + e$$
 (46)

have increased signficantly.

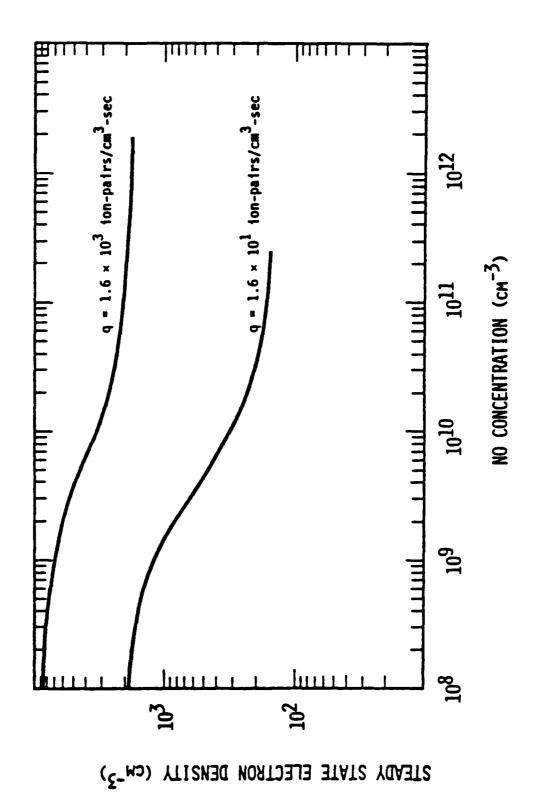


Figure 2. Steady state electron density versus NO concentration.

As the NO concentration is increased to values above 4 \times 10^{10} cm⁻³, the electron density levels off at a fairly constant value. We are in a region now where reaction 45 is the dominant detachment mechanism and any further decrease in the detachment of 0_2^- and 0^- does not significantly affect the electron density.

A recent change in one of the rate coefficients used in our calculations will probably make the electron density in future calculations decrease even further than shown in Figure 2 for large NO concentrations. The rate coefficient is for the reaction

$$NO_2^- + O_3^- + NO_3^- + O_2^-$$
 (47)

and the value we have used is 1.8×10^{-11} cm³/sec. A better value is 1.2×10^{-10} cm³/sec.³ Use of the larger coefficient will decrease the amount of NO_2^- and increase the NO_3^- . Since NO_3^- has a smaller sunlight photodetachment rate than NO_2^- , detachment from O_2^- and O^- will dominate to large NO concentrations and the electron density curve will decrease to lower values before leveling off.

The upper curve in Figure 2 shows the same qualitative behavior as the lower curve. The electron density, however, does not decrease as much and levels off at a higher relative value. The reason for this is not yet clear to us, but further calculations should clarify this behavior. As q is raised further than shown in Figure 2, we will reach a value such that q will dominate the electron production rather than detachment, and the increased NO concentration will have much less effect on the electron density than for lower q's. This, however, does not occur until q is of the order of $10^6~\rm cm^{-3}\text{-sec}^{-1}$ or greater under normal conditions. This usually corresponds to early times after a burst and possibly before steady state ion distributions are established.

SPECIFICATION OF AMBIENT CONSTITUENTS

One of the problems we encountered in our calculations is that most specifications (e.g., the ROSCOE ambient atmosphere⁴) of the concentrations of the minor constituents for natural or ambient conditions are not consistent with the chemistry schemes in use. This means that when chemistry models are applied to the atmospheric minor species, the concentrations of these species will change even when no perturbation, such as a nuclear burst, is involved. If one is interested in phenomena near ambient conditions or the relaxation of the atmosphere to new ambient conditions after a strong disturbance, this is a serious deficiency.

At 60 km altitude during the day, most of the species concentrations in which we are interested are in photochemical equilibrium with certain other constituents. The concentrations of these other species, such as N, 0, H_2 0, $C0_2$, N0, H_2 , and N_2 0, are determined largely by transport processes. Since our chemistry code does not include these transport processes, these species concentrations must be specified initially. The remaining species concentrations must then be obtained by applying sunlight and the chemistry scheme for a sufficient time to establish a steady state. Though this was done for our present calculations, the updating of a number of reaction rates just prior to making our runs introduced some inconsistencies. In further calculations, a new ambient specification will be done whenever the chemistry scheme is changed.

A problem related to this is the specification of the water vapor concentration. The water vapor content in the atmosphere is variable and depends on, among other things, geographical location and time of the year. The amount of water vapor used impacts on both the odd hydrogen and odd oxygen species concentrations. We have used a nominal value of four parts per million for the $\rm H_{2}O$ concentration. In future calculations, different values between one and ten parts per million will be used to determine the importance of this specification.

CONCLUSIONS

The widespread production of nitric oxide by a number of nuclear bursts can have appreciable effect on the propagation of HF signals in the region of 60 km altitude, which is where HF attenuation is greatest. The NO accomplishs this through a reduction in the ambient atomic oxygen and $O_2(^1\Delta)$ concentrations and a reduction in the amount of O_2^- and O_2^- produced by a given ionization rate. This reduces the electron detachment and thus the electron density.

A large scale attack involving all surface bursts would not produce an appreciable amount of NO in the region of 60 km. However, a number of large yield bursts between 30 km and 300 km altitude could provide the requisite amount of NO through a combination of X-ray, beta ray, and gamma ray energy deposition and thermally produced fireball NO which is heaved to the region of 60 km altitude. These bursts could be the part of a ground attack in which salvage fusing was used or part of a high altitude attack on our UHF or ELF-VLF communications systems. In the case of a large scale ground attack, it is difficult to imagine any HF ray path not having to traverse regions containing fission debris unless the transmitter and receiver are airborne. In this case the HF degradation will probably be dominated by the attenuation in these regions and not in the region around 60 km altitude. In the case of a high altitude attack, however, the production of NO could decrease the expected attenuation effects in the D-region at late times and perhaps even enhance HF propagation.

Further calculations are planned over a range of altitudes covering 50 to 70 km and for q's of 0.1 to 10^5 ion-pairs/cm³-sec. Calculations will also be made to specify ambient constituents which are consistent with the chemistry scheme being used. This will insure that the electron density decreases which are calculated, particularly near ambient, are truly due only to the effect of nitric oxide.

REFERENCES

- 1. DNA Reaction Rate Handbook, DNA 1948H.
- 2. Aids for the Study of Electromagnetic Blackout, DNA 3499H.
- Albritton, D. L., <u>Ion-Neutral Reaction-Rate Constants Measured in Flow Reactors Through 1977</u>, Atomic Data and Nuclear Tables, Vol. 22, July 1978.
- 4. Hamlin, D.A. and Schoonover, M.R., <u>The ROSCOE Manual</u>, Vol. 14A-1 Ambient Atmosphere, DNA 3964F-14A-1, June 1979.

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

Assistant Secretary of Defense Comm, Cmd, Cont & Intell ATTN: Dir of Intelligence Sys, J. Babcock

Command & Control Technical Center ATTN: C-650, G. Jones ATTN: C-312, R. Mason 3 cy ATTN: C-650, W. Heidig

Defense Communications Agency

ATTN: Code 205 ATTN: Code 480 ATTN: Code 810, J. Barna ATTN: Code 101B ATTN: Code 480, F. Dieter

Defense Communications Engineer Center ATTN: Code R123 ATTN: Code R410, N. Jones

Defense Intelligence Agency ATTN: DC-7D, W. Wittig ATTN: DT-5 ATTN: DB-4C, E. O'Farrell
ATTN: DB, A. Wise
ATTN: DIR, E. Tighe
ATTN: DT-1B

Defense Nuclear Agency ATTN: NATD ATTN: STNA ATTN: RAEE ATTN: NAFD

3 cy ATTN: raae 4 cy ATTN: TITL

Defense Technical Information Center 12 cy ATTN: DD

Field Command Defense Nuclear Agency ATTN: FCPR

Field Command Defense Nuclear Agency Livermore Branch ATTN: FCPRL

Interservice Nuclear Weapons School ATTN: TTV

Joint Chiefs of Staff ATTN: C3S, Evaluation Office ATTN: C3S

Joint Strat Tgt Planning Staff

ATTN: JLA ATTN: JLTW-2

National Security Agency

ATTN: R-52, J. Skillman ATTN: W-32, O. Bartlett ATTN: B-3, F. Leonard

DEPARTMENT OF DEFENSE (Continued)

Under Secretary of Defense for Rsch & Engrg ATTN: Strategic & Space Sys (OS)

WWMCCS System Engineering Org ATTN: J. Hoff ATTN: R. Crawford

DEPARTMENT OF THE ARMY

Assistant Chief of Staff for Automation & Comm Department of the Army ATTN: DAAC-ZT, P. Kenny

Atmospheric Sciences Laboratory U.S. Army Electronics R&D Command ATTN: DELAS-EO, F. Niles

BMD Systems Command Department of the Army 2 cy ATTN: BMDSC-HW

Deputy Chief of Staff for Ops & Plans Department of the Army ATTN: DAMO-RQC

Harry Diamond Laboratories
Department of the Army
ATTN: DELHD-N-P, F. Wimenitz
ATTN: DELHD-I-TL, M. Weiner
ATTN: DELHD-N-P ATTN: DELHD-N-RB, R. Williams

U.S. Army Chemical School ATTN: ATZN-CM-CS

U.S. Army Comm-Elec Engrg Instal Agency ATTN: CCC-EMEO-PED, G. Lane ATTN: CCC-CED-CCO, W. Neuendorf

U.S. Army Communications Command ATTN: CC-OPS-W ATTN: CC-OPS-WR, H. Wilson

U.S. Army Communications R&D Command ATTN: DRDCO-CCM-RY, W. Kesselman

U.S. Army Foreign Science & Tech Ctr ATTN: DRXST-SD

U.S. Army Materiel Dev & Readiness Cmd ATTN: DRCLDC, J. Bender

U.S. Army Nuclear & Chemical Agency ATTN: Library

U.S. Army Satellite Comm Agency ATTN: Document Control

U.S. Army TRADOC Sys Analysis Actvy ATTN: ATAA-TDC ATTN: ATAA-PL ATTN: ATAA-TCC, F. Payan, Jr

DEPARTMENT OF THE NAVY

COMSPTEVFOR

Department of the Navy

ATTN: Code 605, R. Berg

Joint Cruise Missiles Project Ofc

Department of the Navy ATTN: JCMG-707

Naval Air Development Center

ATTN: Code 6091, M. Setz

Naval Air Systems Command ATTN: PMA 271

Naval Electronic Systems Command

ATTN: PME 106-4, S. Kearney ATTN: PME 117-20

PME 117-2013, G. Burnhart ATTN:

ATTN: Code 3101, T. Hughes

ATTN: Code 501A

ATTN: PME 106-13, T. Griffin

ATTN: PME 117-211, B. Kruger

Naval Intelligence Support Ctr

ATTN: NISC-50

Naval Ocean Systems Center

ATTN: Code 532, J. Bickel ATTN: Code 5322, M. Paulson

3 cy ATTN: Code 5324, W. Moler 3 cy ATTN: Code 5323, J. Ferguson

Naval Research Laboratory ATTN: Code 7950, J. Goodman ATTN: Code 4780, S. Ossakow

Code 4700, T. Coffey ATTN:

ATTN: Code 4187

ATTN: Code 7550, J. Davis ATTN: Code 7500, B. Wald

Naval Space Surveillance System

ATTN: J. Burton

Naval Surface Weapons Center

ATTN: Code F31

Naval Telecommunications Command

ATTN: Code 341

Office of Naval Research

ATTN: Code 420 ATTN: Code 421

Office of the Chief of Naval Operations

ATTN: OP 65 ATTN: OP 981N ATTN: OP 941D

Strategic Systems Project Office

Department of the Navy

ATTN: NSP-2722, F. Wimberly ATTN: NSP-2141

ATTN: NSP-43

DEPARTMENT OF THE AIR FORCE

Aerospace Defense Command Department of the Air Force

ATTN: DC, T. Long

DEPARTMENT OF THE AIR FORCE (Continued)

Air Force Geophysics Laboratory

ATTN: PHP

ATTN: OPR-1

ATTN: LKB, K. Champion

ATTN: OPR, A. Stair

PHI, J. Buchau ATTN:

R. Thompson ATTN:

ATTN: S. Basu

Air Force Weapons Laboratory

Air Force Systems Command

ATTN:

ATTN: NTYC

ATTN: NTN

Air Force Wright Aeronautical Lab

ATTN: W. Hunt ATTN: A. Johnson

Air Logistics Command Department of the Air Force

ATTN: 00-ALC/MM, R. Blackburn

Air University Library

Department of the Air Force ATTN: AUL-LSE

Air Weather Service, MAC Department of the Air Force

ATTN: DNXP, R. Babcock

Assistant Chief of Staff

Studies & Analyses

Department of the Air Force

ATTN: AF/SASC, W. Keaus ATTN: AF/SASC, C. Rightmeyer

ď.

4. 6 mars

Ballistic Missile Office

Air Force Systems Command

ATTN: ENSN, J. Allen

Deputy Chief of Staff

Operations Plans and Readiness

Department of the Air Force

ATTN: AFXOKT

ATTN: AFXOXFD ATTN: AFXOKS

ATTN: AFXOKCD

Deputy Chief of Staff

Research, Development, & Acq

Department of the Air Force

ATTN: AFRDSS ATTN: AFRDSP

ATTN: AFRDS

Electronic Systems Division Air Force Systems Command

ATTN: DCKC, J. Clark

Electronic Systems Division

Air Force Systems Command ATTN: XRW, J. Deas

Electronic Systems Division

Air Force Systems Command ATTN: YSM, J. Kobelski ATTN: YSEA

DEPARTMENT OF THE AIR FORCE (Continued)

Foreign Technology Division Air Force Systems Command ATTN: TQTD, B. Ballard ATTN: NIIS, Library

Headquarters Space Division Air Force Systems Command
ATTN: SKA, D. Bolin
ATTN: SKY, C. Kennedy

Headquarters Space Division Air Force Systems Command ATTN: YZJ, W. Mercer

Headquarters Space Division Air Force Systems Command ATTN: E. Butt

Rome Air Development Center Air Force Systems Command
ATTN: TSLD
ATTN: OCS, V. Coyne

Rome Air Development Center Air Force Systems Command ATTN: EEP

Strategic Air Command Department of the Air Force

ATTN: NRT ATTN: XPFS ATTN: DCXR, T. Jorgensen

ATTN: DCX ATTN: DCXT

OTHER GOVERNMENT AGENCIES

Department of Commerce National Bureau of Standards ATTN: Sec Ofc for R. Moore

Department of Commerce National Oceanic & Atmospheric Admin ATTN: R. Grubb ATTN: F. Fehsenfeld

Institute for Telecommunications Sciences National Telecommunications & Info Admin

ATTN: L. Berry ATTN: W. Utlaut ATTN: A. Jean

U.S. Coast Guard Department of Transportation ATTN: G-DOE-3/TP54, B. Romine

DEPARTMENT OF ENERGY CONTRACTORS

EG&G, Inc ATTN: J. Colvin ATTN: D. Wright

Lawrence Livermore National Lab ATTN: Tech Info Dept, Library

Los Alamos National Lab ATTN: R. Taschek ATTN: D. Westervelt ATTN: P. Keaton

DEPARTMENT OF ENERGY CONTRACTORS (Continued)

Sandia National Laboratories Livermore Laboratory ATTN: B. Murphey ATTN: T. Cook

Sandia National Lab

ATTN: Space Project Div

ATTN: D. Dahlgren

ATTN: Org 1250, W. Brown ATTN: 3141

ATIN: D. Thornbrough

DEPARTMENT OF DEFENSE CONTRACTORS

Aerospace Corp ATTN: S. Bower ATTN: V. Josephson ATTN: 1. Garfunkel ATTN: R. Slaughter ATTN: D. Olsen ATTN: N. Stockwell ATTN: T. Salmi ATTN: J. Straus

University of Alaska ATTN: N. Brown ATTN: Technical Library

ATTN: T. Davis

Analytical Systems Engineering Corp ATTN: Radio Sciences

Analytical Systems Engineering Corp ATTN: Security

Barry Research Corporation ATTN: J. McLaughlin

BDM Corp ATTN: L. Jacobs ATTN: T. Neighbors

Berkeley Research Associates, Inc ATTN: J. Workman

Betac

ATTN: J. Hirsch

Boeing Co

ATTN: G. Hall ATTN: S. Tashird ATTN: M/S 42-33, J. Kennedy

Booz-Allen & Hamilton, Inc ATTN: B. Wilkinson

University of California at San Diego ATTN: H. Booker

Charles Stark Draper Lab, Inc ATTN: J. Gilmore ATTN: D. Cox

Communications Satellite Corp ATTN: D. Fang

Comsat Labs ATTN: R. Taur ATTN: G. Hyde

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Cornell University
ATTN: M. Kelly
ATTN: D. Farley, Jr

Electrospace Systems, Inc ATTN: H. Logston

ESL. Inc ATIN: J. Marshall

General Electric Co ATTN: A. Harcar ATTN: M. Bortner

General Electric Co ATIN: C. Zierdt ATTN: A. Steinmayer

General Electric Co ATTN: F. Reibert

General Electric Co ATTN: G. Millman

General Research Corp ATTN: J. Garbarino ATTN: J. Ise, Jr

Horizons Technology, Inc ATTN: R. Kruger

HSS. Inc ATTN: D. Hansen

IBM Corp ATTN: F. Ricci

University of Illinois
ATTN: Sec Supervisor for K. Yeh

Institute for Defense Analyses ATTN: J. Bengston ATTN: J. Aein ATTN: H. Wolfhard ATTN: E. Bauer

International Tel & Tel Corp ATIN: G. Wetmore ATIN: Tech Library

JAYCOR ATTN: J. Sperling

JAYCOR ATTN: J. Doncarlos

Johns Hopkins University
ATTN: J. Phillips
ATTN: P. Komiske
ATTN: T. Potemra
ATTN: T. Evans
ATTN: J. Newland

Kaman Tempo ATTN: DASIAC ATTN: T. Stephens ATTN: W. Knapp

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Linkabit Corp ATTN: I. Jacobs

Litton Systems, Inc ATTN: R. Grasty

Lockheed Missiles & Space Co, Inc ATTN: W. Imhof ATTN: M. Walt ATTN: R. Johnson

Lockheed Missiles & Space Co, Inc ATTN: Dept 60-12

M.I.T. Lincoln Lab ATTN: D. Towle

McDonnell Douglas Corp ATTN: J. Moule ATTN: G. Mroz ATTN: N. Harris ATTN: W. Olson

Meteor Communications Consultants ATTN: R. Leader

Mission Research Corp
ATTN: S. Gutsche
ATTN: Tech Library
ATTN: R. Hendrick
ATTN: R. Bogusch
ATTN: F. Fajen
4 cy ATTN: M. Schiebe
5 cy ATTN: Document Control

Mitre Corp ATTN: A. Kymmel ATTN: C. Callahan ATTN: B. Adams ATTN: G. Harding

Mitre Corp ATIN: W. Foster ATTN: M. Horrocks ATTN: W. Hall

Pacific-Sierra Research Corp ATTN: E. Field, Jr ATTN: F. Thomas ATTN: H. Brode

Pennsylvania State University ATTN: Ionospheric Research Lab

Photometrics, Inc ATTN: I. Kofsky

Physical Dynamics, Inc ATTN: E. Fremouw

Physical Research, Inc ATTN: R. Deliberis

R & D Associates ATTN: B. Yoon

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

R & D Associates

ATTN: C. Greifinger ATTN: B. Gabbard

ATTN: M. Gantsweg ATTN: R. Lelevier

ATTN: R. Turco ATTN: F. Gilmore

ATTN: H. Ory
ATTN: W. Karzas
ATTN: W. Wright
ATTN: P. Haas

Rand Corp ATTN: E. Bedrozian ATTN: C. Crain

Riverside Research Institute

ATTN: V. Trapani

Rockwell International Corp

ATTN: R. Buckner

Rockwell International Corp

ATTN: S. Quilici

Santa Fe Corp ATTN: D. Paolucci

Science Applications, Inc

ATTN: D. Hamlin ATTN: C. Smith

ATTN: L. Linson ATTN: E. Straker

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Science Applications, Inc ATTN: SZ

SRI International

ATTN: J. Petrickes ATTN: C. Rino

ATTN: D. Neilson ATTN: M. Baron ATTN: R. Livingston ATTN: W. Chesnut

ATTN: R. Leadabrand ATTN: A. Burns ATTN: R. Tsunoda

ATTN: G. Smith ATTN: G. Price ATTN: W. Jaye

Sylvania Systems Group ATTN: M. Cross

Tri-Com, Inc ATTN: D. Murray

TRW Defense & Space Sys Group ATTN: R. Plebuch ATTN: D. Dee

Utah State University

ATTN: K. Baker ATTN: J. Dupnik ATTN: L. Jensen

Visidyne, Inc ATTN: J. Carpenter

DATE FILMED

DTIC